Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May 3;271(18):10697-703.
doi: 10.1074/jbc.271.18.10697.

AdipoQ is a novel adipose-specific gene dysregulated in obesity

Affiliations
Free article

AdipoQ is a novel adipose-specific gene dysregulated in obesity

E Hu et al. J Biol Chem. .
Free article

Abstract

Adipose differentiation is accompanied by changes in cellular morphology, a dramatic accumulation of intracellular lipid and activation of a specific program of gene expression. Using an mRNA differential display technique, we have isolated a novel adipose cDNA, termed adipoQ. The adipoQ cDNA encodes a polypeptide of 247 amino acids with a secretory signal sequence at the amino terminus, a collagenous region (Gly-X-Y repeats), and a globular domain. The globular domain of adipoQ shares significant homology with subunits of complement factor C1q, collagen alpha 1(X), and the brain-specific factor cerebellin. The expression of adipoQ is highly specific to adipose tissue in both mouse and rat. Expression of adipoQ is observed exclusively in mature fat cells as the stromal-vascular fraction of fat tissue does not contain adipoQ mRNA. In cultured 3T3-F442A and 3T3-L1 preadipocytes, hormone-induced differentiation dramatically increases the level of expression for adipoQ. Furthermore, the expression of adipoQ mRNA is significantly reduced in the adipose tissues from obese mice and humans. Whereas the biological function of this polypeptide is presently unknown, the tissue-specific expression of a putative secreted protein suggests that this factor may function as a novel signaling molecule for adipose tissue.

PubMed Disclaimer

Publication types

Associated data