Synthesis and pharmacology of potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-substituted methylphenidate analogs
- PMID: 8632426
- DOI: 10.1021/jm950697c
Synthesis and pharmacology of potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-substituted methylphenidate analogs
Abstract
As part of a program to develop medications which can block the binding of cocaine to the dopamine transporter, yet spare dopamine uptake, a series of aromatic ring-substituted methylphenidate derivatives was synthesized and tested for inhibitory potency in [3H]WIN 35,428 binding and [3H]dopamine uptake assays using rat striatal tissue. Synthesis was accomplished by alkylation of 2-bromopyridine with anions derived from various substituted phenylacetonitriles. In most cases, erythro compounds were markedly less potent than the corresponding (+/-)-threo-methylphenidate (TMP; Ritalin) derivatives. The ortho-substituted compounds were much less potent than the corresponding meta- and/or para-substituted derivatives. The most potent compound against [3H]WIN 35,428 binding, m-bromo-TMP, was 20-fold more potent than the parent compound, whereas the most potent compound against [3H]dopamine uptake, m,p-dichloro-TMP, was 32-fold more potent. Threo derivatives with m- or p-halo substituents were more potent than TMP, while electron-donating substituents caused little change or small loss of potency. All of the derivatives had Hill coefficients approaching unity, except m,p-dichloro-TMP, which had an nH of 2.0. Although the potency of the (+/-)-methylphenidate derivatives in the two assays was highly correlated (R2 = 0.986), the compounds m-chloro-,m-methyl-, and p-iodo-TMP were 4-5-fold more potent at inhibiting [3H]-WIN 35,428 binding than [3H]dopamine uptake (cocaine has a ratio of 2.3). These and other compounds may be promising candidates for further testing as potential partial agonists or antagonists of cocaine.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Chemical Information
Research Materials
Miscellaneous
