Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar 22;271(12):6605-10.
doi: 10.1074/jbc.271.12.6605.

Ca2+-calmodulin binds to the carboxyl-terminal domain of dystrophin

Affiliations
Free article

Ca2+-calmodulin binds to the carboxyl-terminal domain of dystrophin

J T Anderson et al. J Biol Chem. .
Free article

Abstract

The unique COOH-terminal domain of dystrophin (mouse dystrophin protein sequences 3266-3678) was expressed as a chimeric fusion protein (with the maltose-binding protein), and its binding to calmodulin was assessed. This fusion protein, called DysS9, bound to calmodulin-Sepharose, bound biotinylated calmodulin, caused characteristic changes in the fluorescence emission spectrum of dansyl-calmodulin, and had an apparent affinity for dansyl-calmodulin of 54 nM. Binding in each case was Ca2+-dependent. The maltose-binding protein does not bind calmodulin, and thus binding resides in the dystrophin-derived sequences. Deletion mutation experiments further localize the high affinity calmodulin binding to mouse dystrophin protein sequences 3293-3349, and this domain contains regions with chemical characteristics found in the calmodulin-binding sequences in other proteins. The COOH-terminal domain provides sites of attachment of dystrophin to membrane proteins, and calmodulin binding may modulate these interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources