Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;58(21):1891-9.
doi: 10.1016/0024-3205(96)00173-7.

Increased kynurenic acid levels and decreased brain kynurenine aminotransferase I in patients with Down syndrome

Affiliations

Increased kynurenic acid levels and decreased brain kynurenine aminotransferase I in patients with Down syndrome

H Baran et al. Life Sci. 1996.

Abstract

Excitatory amino acid (EAA) receptors are central to brain physiology and play important roles in learning and memory processes. Kynurenic acid (KYNA), a metabolite of tryptophan in the brain blocks all three classical ionotropic EAA receptors and also serves as an antagonist at the glycine site associated with the N-methyl-D-aspartate receptor (NMDA) complex. We measured the endogenous levels of KYNA and activities of KYNA synthesizing enzymes kynurenine aminotransferase I (KAT I) and kynurenine aminotransferase II (KAT II) in the frontal and temporal cortex of elderly Down syndrome (DS) patients (aged 46-69 years). Compared with control specimens (0.21 +/- 0.06 pmol/mg tissue), the measurement of KYNA content revealed a significant 3-fold increase in frontal cortex of DS patients (0.67 +/- 0.13 pmol/mg tissue; p < or = 0.01). In temporal cortex KYNA levels were increased by 151% (p < or = 0.05) of control (0.41 +/- 0.09 pmol/mg tissue) Using crude cell free homogenate KAT's activities were determined in the presence of the 1 mM 2-oxoacid as a co-substrate at their pH optima of 10.0 for KAT I and 7.4 for KAT II. KATs activities in the presence of 1 mM pyruvate were 2.79 +/- 0.52 and 4.55 +/- 1.98 pmol/mg protein/h for KAT I and 0.98 +/- 0.07 and 1.09 +/- 0.14 pmol/mg protein/h for KAT II in frontal cortex and temporal cortex, respectively. When compared with the brain samples of controls the activity of KAT I was reduced in frontal cortex (9.8 +/- 2.4%; p < or = 0.01) and temporal cortex (25.8 +/- 6.4 %) of DS patients, while KAT II levels were within the normal range. Measurement of the neuronal, cholinergic marker choline acetyltransferase (ChAT) in the frontal cortex, revealed a significant reduction (36.6 +/- 4.3% of control; p < or = 0.01) in DS. Our data demonstrate the involvement of KYNA-metabolism in the cellular mechanisms underlying altered cognitive function in patients with DS. Although the localisation of both, KAT I and KAT II is not stated yet the reduction of KAT I may suggest impairment of KYNA metabolism in neuronal and/or nonneuronal compartments.

PubMed Disclaimer

Publication types

LinkOut - more resources