Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 1;12(3):631-40.

Analysis of chimeric Gag-Arg/Abl molecules indicates a distinct negative regulatory role for the Arg C-terminal domain

Affiliations
  • PMID: 8637720

Analysis of chimeric Gag-Arg/Abl molecules indicates a distinct negative regulatory role for the Arg C-terminal domain

T Mysliwiec et al. Oncogene. .

Abstract

Arg and c-Abl represent the mammalian member of the Abelson family of nonreceptor protein tyrosine kinases. The two proteins are composed of SH2, SH3, kinase and C-terminal domains. To examine Arg structure-function relationships we analysed a Gag-Arg fusion protein, analogous to the oncogenic Gag-Abl fusion protein of Abelson Murine Leukaemia Virus and found that in contrast to Gag-Abl, it lacked transforming activity. Three observations indicated that the difference in the transforming activity was mediated by the distinct Arg and Abl C-terminal domains. (1) The analysis of chimeric Gag-Arg/Abl molecules revealed that the Arg C-terminal domain completely abrogated Gag-Abl transforming activity and that the Abl C-terminus conferred transforming activity to Gag-Arg. Substitutions of SH2 and kinase domains did not affect activity. (2) Alterations in the Arg C-terminus were observed in spontaneous foci that developed in transfections of two nontransforming chimera. (3) An engineered Gag-Arg molecule containing a truncation of almost the entire C-terminal domain, including three SH3 domain-binding sites, was oncogenic, whereas a slightly smaller truncation that deleted two of three SH3 domain-binding sites, lacked transforming activity. These observations indicate that the C-terminal domain regulates Arg biological activity in a manner distinct from c-Abl and suggest that this effect may be mediated in part by SH3 domain-binding sites.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources