Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May 15;87(10):4440-7.

Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst

Affiliations
  • PMID: 8639806

Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst

T C Hofstra et al. Blood. .

Abstract

The vasoocclusive process in patients with sickle cell disease (SCD) is complex and involves interactions among sickle erythrocytes (SS-RBC), vascular endothelium, and plasma and cellular components. The role of neutrophils (PMN) in vasoocclusion has not been examined. Patients with SCD appear to have chronically activated PMN. Because the first step in PMN activation is particle recognition, we explored whether normal PMN recognize SS-RBC and whether this recognition results in PMN monolayers, significantly more SS-RBC adhered to the PMN than did normal erythrocytes (AA-RBC; P < .001). Preincubation of erythrocytes with autologous plasma significantly increased the adherence of SS-RBC to PMN but had no effect on AA-RBC (P < .001). When adhesion of density fractionated SS-RBC was performed, dense SS-RBC showed greater adherence to the PMN monolayers than did light SS-RBC (P < .001). To determine mechanisms of this adhesion, IgG and Arg-Gly-Asp-Ser (RGDS) receptor sites on PMN were saturated. IgG inhibited adherence of dense SS-RBC, whereas RGDS inhibited adherence in both fractions, although to a greater extent in the light fraction. We measured SS-RBC activation of PMN by incubating SS-RBC with 2', 7'-Dichloro-fluroescin Diacetate (DCF)-labeled PMN. Incubation of PMN with SS-RBC resulted in a significant increase in fluorescence compared to AA-RBC. We show here that PMN recognize SS-RBC through multiple mechanisms and that this recognition results in activation of PMN. These findings contribute to the understanding of vasoocclusive crisis in patients with SCD and may have therapeutic implications.

PubMed Disclaimer

Publication types

LinkOut - more resources