Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar 1;56(5):1168-73.

Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is unaffected

Affiliations
  • PMID: 8640779

Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is unaffected

A Krtolica et al. Cancer Res. .

Abstract

Although hypoxic cells are generally resistant to radiation and chemical therapies designed to halt the spread of neoplastic disease, few investigations have been carried out with regard to the molecular mechanisms responsible for this phenomenon. Here, we report of the development of an in vitro model system with which to study the molecular mechanisms involved in the proliferation and invasion of human ovarian carcinoma cells under hypoxia. Results from [(3)]thymidine incorporation experiments indicate that hypoxia triggers cessation of ovarian carcinoma cell DNA synthesis. Flow cytometry analysis of cellular DNA content for hypoxic cultures revealed that cell cycle progression was arrested. This arrest was found to be reversible upon reoxygenation of the cultures. Concomitant with this growth arrest is hypophosphorylation of pRB and a reduction in cyclin A abundance, suggesting that hypoxia induces growth arrest by regulating the activities of these crucial cell cycle-regulatory proteins. In vitro invasion assays revealed that hypoxia has no appreciable effect on the invasive ability of these cells. Immunoblotting established that the detected proteolytic activity was due to the matrix metalloproteinase MMP-2, the M(r) 72,000 type IV collagenase that is most closely associated with the metastatic phenotype in vitro and in vivo. These data support the notion that populations of ovarian carcinoma cells are capable of surviving and invading extracellular matrix during hypoxic conditions and, after a more suitable oxygen environment is reached, giving rise to new cell colonies.

PubMed Disclaimer

Publication types

LinkOut - more resources