Using buried water molecules to explore the energy landscape of proteins
- PMID: 8646535
- DOI: 10.1038/nsb0696-505
Using buried water molecules to explore the energy landscape of proteins
Abstract
Buried water molecules constitute a highly conserved, integral part of nearly all known protein structures. Such water molecules exchange with external solvent as a result of protein conformational fluctuations. We report here the results of water (17)O and (2)H magnetic relaxation dispersion measurements on wild-type and mutant bovine pancreatic trypsin inhibitor in aqueous solution at 4-80 degrees C. These data lead to the first determination of the exchange rate of a water molecule buried in a protein. The strong temperature dependence of this rate is ascribed to large-scale conformational fluctuations in an energy landscape with a statistical ruggedness of approximately 10 kJ mol(-1).