Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;132(4):585-93.
doi: 10.1083/jcb.132.4.585.

Different fates of phagocytosed particles after delivery into macrophage lysosomes

Affiliations

Different fates of phagocytosed particles after delivery into macrophage lysosomes

Y K Oh et al. J Cell Biol. 1996 Feb.

Abstract

Phagocytosis in macrophages is often studied using inert polymer microspheres. An implicit assumption in these studies is that such particles contain little or no specific information in their structure that affects their intracellular fate. We tested that assumption by examining macrophage phagosomes containing different kinds of particles and found that although all particles progressed directly to lysosomes, their subsequent fates varied. Within 15 min of phagocytosis, >90% of phagosomes containing opsonized sheep erythrocytes, poly-e-caprolactone microspheres, polystyrene microspheres (PS), or polyethylene glycol-conjugated PS merged with the lysosomal compartment. After that point, however, the characteristics of phagolysosomes changed in several ways that indicated differing degrees of continued interaction with the lysosomal compartment. Sheep erythrocyte phagolysosomes merged together and degraded their contents quickly, poly-e-caprolactone phagolysosomes showed intermediate levels of interaction, and PS phagolysosomes became isolated within the cytoplasm. PS were relatively inaccessible to an endocytic tracer, Texas red dextran, added after phagocytosis. Moreover, immunofluorescent staining for the lysosomal protease cathepsin L decreased in PS phagolysosomes to 23% by 4 h after phagocytosis, indicating degradation of the enzyme without replacement. Finally, PS surface labeled with fluorescein-labeled albumin showed a markedly reduced rate of protein degradation in phagolysosomes, when compared to rates measured for proteins in or on other particles. Thus, particle chemistry affected both the degree of postlysosomal interactions with other organelles and, consequently, the intracellular half-life of particle-associated proteins. Such properties may affect the ability of particles to deliver macromolecules into the major histocompatibility complex class I and II antigen presentation pathways.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur J Biochem. 1977 Apr 1;74(2):293-301 - PubMed
    1. J Biol Chem. 1989 May 5;264(13):7377-83 - PubMed
    1. J Cell Biol. 1985 Jul;101(1):85-95 - PubMed
    1. Anal Biochem. 1984 Nov 15;143(1):30-4 - PubMed
    1. Science. 1994 Feb 4;263(5147):678-81 - PubMed

Publication types