Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;33(2):221-30.
doi: 10.1016/0161-5890(95)00065-8.

Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling

Affiliations

Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling

J S Lim et al. Mol Immunol. 1996 Feb.

Abstract

Cytotoxic T lymphocytes recognize antigenic peptides in association with major histocompatibility complex class I proteins. Although a large set of class I binding peptides has been described, it is not yet easy to search for potentially antigenic peptides without synthesis of a panel of peptides, and subsequent binding assays. In order to predict HLA-A2.1-restricted antigenic epitopes, a computer model of the HLA-A2.1 molecule was established using X-ray crystallography data. In this model nonameric peptide sequences were aligned. In a molecular dynamics (MD) simulation with two sets of peptides known to be presented by HLA-A2.1, it was important to know the anchor amino acid residue preference and the distance between the anchor residues. We show here that the peptides bound to the HLA-A2.1 model structure possess a side chain of C-terminal anchor residue oriented into the binding groove with different distances between the two anchor residues from 15 to 21A. We also synthesized a set of nonamer peptides containing amino acid sequences of Hepatitis B virus protein that were selected on the basis of previously described HLA-A2.1 specific motifs. When results obtained from the MD simulation were compared with functional binding assays using the TAP-deficient cell line T2, it was evident that the MD simulation method improves prediction of the HLA-A2.1 binding epitope sequence. These results suggest that this approach can provide a way to predict peptide epitopes and search for antigenic regions in sequences in a variety of antigens without screening a large number of synthetic peptides.

PubMed Disclaimer

LinkOut - more resources