Conformational trapping in a membrane environment: a regulatory mechanism for protein activity?
- PMID: 8650185
- PMCID: PMC39154
- DOI: 10.1073/pnas.93.12.5872
Conformational trapping in a membrane environment: a regulatory mechanism for protein activity?
Abstract
Functional regulation of proteins is central to living organisms. Here it is shown that a nonfunctional conformational state of a polypeptide can be kinetically trapped in a lipid bilayer environment. This state is a metastable structure that is stable for weeks just above the phase transition temperature of the lipid. When the samples are incubated for several days at 68 degrees C, 50% of the trapped conformation converts to the minimum-energy functional state. This result suggests the possibility that another mechanism for functional regulation of protein activity may be available for membrane proteins: that cells may insert proteins into membranes in inactive states pending the biological demand for protein function.
Similar articles
-
Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system.Biophys J. 1997 Aug;73(2):614-23. doi: 10.1016/S0006-3495(97)78097-4. Biophys J. 1997. PMID: 9251781 Free PMC article.
-
Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers.Biophys J. 1988 Aug;54(2):259-67. doi: 10.1016/S0006-3495(88)82955-2. Biophys J. 1988. PMID: 2462923 Free PMC article.
-
Comparison of Replica Exchange Simulations of a Kinetically Trapped Protein Conformational State and its Native Form.J Phys Chem B. 2016 Mar 10;120(9):2234-40. doi: 10.1021/acs.jpcb.6b00233. Epub 2016 Feb 26. J Phys Chem B. 2016. PMID: 26886055
-
The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.Prog Biophys Mol Biol. 2012 Jan;108(1-2):1-46. doi: 10.1016/j.pbiomolbio.2011.09.005. Epub 2011 Sep 17. Prog Biophys Mol Biol. 2012. PMID: 21951575 Review.
-
Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer.Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):809-817. doi: 10.1016/j.bbamem.2017.08.012. Epub 2017 Sep 1. Biochim Biophys Acta Biomembr. 2018. PMID: 28865797 Review.
Cited by
-
Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels.J Phys Chem B. 2012 Sep 13;116(36):11056-64. doi: 10.1021/jp304846f. Epub 2012 Aug 30. J Phys Chem B. 2012. PMID: 22892073 Free PMC article.
-
Structural restraints and heterogeneous orientation of the gramicidin A channel closed state in lipid bilayers.Biophys J. 2004 May;86(5):2837-45. doi: 10.1016/S0006-3495(04)74336-2. Biophys J. 2004. PMID: 15111401 Free PMC article.
-
Helical membrane protein conformations and their environment.Eur Biophys J. 2013 Oct;42(10):731-55. doi: 10.1007/s00249-013-0925-x. Epub 2013 Sep 1. Eur Biophys J. 2013. PMID: 23996195 Free PMC article. Review.
-
Solid state NMR: The essential technology for helical membrane protein structural characterization.J Magn Reson. 2014 Feb;239:100-9. doi: 10.1016/j.jmr.2013.12.006. Epub 2013 Dec 19. J Magn Reson. 2014. PMID: 24412099 Free PMC article.
-
Validation of the single-stranded channel conformation of gramicidin A by solid-state NMR.Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7910-5. doi: 10.1073/pnas.96.14.7910. Proc Natl Acad Sci U S A. 1999. PMID: 10393921 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources