Category-based predictions: influence of uncertainty and feature associations
- PMID: 8656154
Category-based predictions: influence of uncertainty and feature associations
Abstract
Four experiments examined how people make inductive inferences using categories. Subjects read stories in which 2 categories were mentioned as possible identities of an object. The less likely category was varied to determine if people were using it, as well as the most likely category, in making predictions about the object. Experiment 1 showed that even when categorization uncertainty was emphasized, subjects used only 1 category as the basis for their prediction. Experiments 2-4 examined whether people would use multiple categories for making predictions when the feature to be predicted was associated to the less likely category. Multiple categories were used in this case, but only in limited circumstances; furthermore, using multiple categories in 1 prediction did not cause subjects to use them for subsequent predictions. The results increase the understanding of how categories are used in inductive inference.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources