Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Apr 15:779:430-42.
doi: 10.1111/j.1749-6632.1996.tb44818.x.

Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle

Affiliations
Review

Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle

D M Bers et al. Ann N Y Acad Sci. .

Abstract

There are four cellular Ca transport systems which compete to remove Ca from the myoplasm in mammalian ventricular myocytes. These are 1) the SR Ca-ATPase, 2) the sarcolemmal Na-Ca exchange, 3) the sarcolemmal Ca-ATPase and 4) the mitochondrial Ca uniporter. Using multiple experimental approaches we have evaluated the dynamic interaction of these systems during the normal cardiac contraction-relaxation cycle. The SR Ca-ATPase and Na-Ca exchange are clearly the most important, quantitatively; however, the relative roles vary in a species-dependent manner. In particular, the SR is much more strongly dominant in rat ventricular myocytes, where approximately 92% of Ca removal is via SR Ca-ATPase and only 7% via Na-Ca exchange during a twitch. In other species (rabbit, ferret, cat, and guinea pig) the balance is more in the range of 70% SR CA-ATPase and 25-30% Na-Ca exchange. Ferret ventricular myocytes also exhibit an unusually strong sarcolemmal Ca-ATPase. During the steady state the same amount of Ca must leave the cell as enters over a cardiac cycle. This implies that 25-30% of the Ca required to activate contraction must enter the cell, and experiments demonstrate that this amount of Ca may be supplied by the L-type Ca current.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources