Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 15;220(2):361-6.
doi: 10.1006/viro.1996.0324.

Conservation of a hairpin ribozyme sequence in HIV-1 is required for efficient viral replication

Affiliations
Free article

Conservation of a hairpin ribozyme sequence in HIV-1 is required for efficient viral replication

O Yamada et al. Virology. .
Free article

Abstract

We have previously described a hairpin ribozyme that targets a highly conserved sequence in the U5 region of HIV-1. To determine if escape mutations would compromise virus replication, we introduced critical mutations into the ribozyme target site of an infectious molecular clone of HIV-1MN. HIV-1 MNA has a substitution of A for G immediately 3' to the cleavage site and HIV-1 MNGC has two substitutions in the flanking sequences that are complementary to the ribozyme. In vitro studies confirmed that neither the MNA-nor the MNGC-mutated target sequence was cleaved by the ribozyme, and furthermore, the MNGC-mutated target sequence failed to bind the ribozyme. Compensatory GC substitutions in the substrate recognition domain of the ribozyme resulted in a switch of binding and cleavage specificity. Replication of both the MNA and MNGC mutant viruses was initially two to three logs lower than that of wild-type virus, but after 3 weeks, virus production rose sharply in both cultures. Nucleotide sequence of RT-PCR-amplified viral sequences obtained from virus produced at later time points revealed complete reversion of MNA or partial reversion of MNGC to wild-type genotypes. No additional mutations within the ribozyme target sequence were observed. These results indicate that mutations in this conserved ribozyme target sequence led to significant attenuation of HIV-1MN.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources