Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jun 7;271(23):13816-20.
doi: 10.1074/jbc.271.23.13816.

DNA polymerases alpha and beta are required for DNA repair in an efficient nuclear extract from Xenopus oocytes

Affiliations
Free article
Comparative Study

DNA polymerases alpha and beta are required for DNA repair in an efficient nuclear extract from Xenopus oocytes

N Oda et al. J Biol Chem. .
Free article

Abstract

Xenopus oocytes and an oocyte nuclear extract efficiently repair the bulky DNA lesions cyclobutane pyrimidine dimers,(6-4) photoproducts, and N-acetoxy-2-aminofluorene (AAF) adducts by an excision repair mechanism. Nearly all (>95%) of the input damaged DNA was repaired within 5 h in both injected cells and extracts with no significant incorporation of label into control undamaged DNA. Remarkably, more than 10(10) cyclobutane pyrimidine dimers or(6-4) photoproducts are repaired/nuclei. The extracts are free from nuclease activity, and repair is independent of exogenous light. Both the high efficiency and DNA polymerase requirements of this system appear to be different from extracts derived from human cells. We demonstrated a requirement for DNA polymerases alpha and beta in repair of both photoproducts and AAF by inhibiting repair with several independent antibodies specific to either DNA polymerases alpha or beta and then restoring repair by adding the appropriate purified polymerase. Repair is inhibited by aphidicolin at concentrations specific for blocking DNA polymerase alpha and dideoxynucleotide triphosphates at concentrations specific for inhibiting DNA polymerase beta.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources