Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 14;271(24):14264-70.
doi: 10.1074/jbc.271.24.14264.

Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases

Affiliations
Free article

Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases

G F Ames et al. J Biol Chem. .
Free article

Abstract

The histidine-binding protein, HisJ, is the soluble receptor for the periplasmic histidine permease of Salmonella typhimurium. The receptor binds the substrate in the periplasm, interacts with the membrane-bound complex, transmits a transmembrane signal to hydrolyze ATP, and releases the ligand for translocation. HisJ, like other periplasmic receptors, has two lobes that are apart in the unliganded structure (open conformation) and drawn close together in the liganded structure (closed conformation), burying deeply the ligand. Such receptors are postulated to interact with the membrane-bound complex with high affinity in their liganded conformation, and, upon substrate translocation, to undergo a reduction in affinity and therefore be released. Here we show that in contrast to the current postulate, liganded and unliganded receptors have equal affinity for the membrane-bound complex. The affinity is measured both by chemical cross-linking and co-sedimentation procedures. An ATPase activity assay is also used to demonstrate the interaction of unliganded receptor with the membrane-bound complex. These findings support a new model for the transport mechanism, in which the soluble receptor functions independently of the commonly accepted high-low affinity switch.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources