Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 14;271(24):14098-104.
doi: 10.1074/jbc.271.24.14098.

Characterization of a Ku86 variant protein that results in altered DNA binding and diminished DNA-dependent protein kinase activity

Affiliations

Characterization of a Ku86 variant protein that results in altered DNA binding and diminished DNA-dependent protein kinase activity

Z Han et al. J Biol Chem. .

Abstract

Three proteins known to play a critical role in mammalian DNA double-strand break repair and lymphoid V(D)J recombination are the autoantigens Ku86 and Ku70 and a 465-kDa serine/threonine protein kinase catalytic subunit (DNA-PKcs). These proteins physically associate to form a complex (DNA.PK) with DNA-dependent protein kinase activity. In this study, we demonstrate using electrophoretic mobility shift assays (EMSAs) that the nuclear DNA end-binding activity of Ku is altered in the human promyelocytic leukemic HL-60 cell line. Western blot and EMSA supershift analyses revealed that HL-60 cells expressed both full-length and variant Ku86 proteins. However, a combined EMSA and immunoanalysis revealed that the Ku heterodimers complexed with DNA in HL-60 cells contained only the variant Ku86 proteins. Finally, UV cross-linking experiments and DNA.PK assays demonstrated that the Ku complexes containing variant Ku86 had a greatly reduced ability to interact with DNA-PKcs and that consequently HL-60 cells had severely diminished DNA.K activity. These data provide important insights into the interaction between Ku and DNA-PKcs and into the role of DNA.PK in DNA double-strand break repair.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources