Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 21;271(25):14925-30.
doi: 10.1074/jbc.271.25.14925.

Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores

Affiliations
Free article

Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores

C J Favre et al. J Biol Chem. .
Free article

Abstract

Net Ca2+ uptake into intracellular Ca2+ stores of homogenized cells is transient, even when the extravesicular Ca2+ concentration is kept constant. To study the mechanism underlying the phenomenon, we have investigated 45Ca2+ uptake by HL-60 cell homogenates. The initial rate of Ca2+ uptake as well as the final amount of stored Ca2+ were a function of the extravesicular Ca2+ concentration. However, Ca2+ uptake stopped independently of the extravesicular Ca2+ concentration after approximately 10 min. Studies using Ca2+-ATPase inhibitors demonstrated that the transient nature of the net uptake was not due to Ca2+ efflux. Monovalent cation ionophores did not influence the Ca2+ uptake curves, excluding a relevant involvement of pH and membrane potential. Together with the observation of a continued Ca2+ uptake in the presence of the intralumenal Ca2+ chelator oxalate, these results strongly suggest a feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores. The concentration-inhibition relationship between the Ca2+ load and the rate of Ca2+ uptake was highly supralinear (slope factor >/= 4). IC50 and maximum of the dose-inhibition curve, but not the slope factor were a function of the extravesicular free Ca2+ concentration. A series of three logistic equations derived from our data allowed an appropriate description of the behavior of Ca2+ uptake. Our results suggest, in addition to its well known activation by cytosolic Ca2+ concentration, a highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores. The steepness of the feedback inhibition might have a profound effect on spatial and temporal behavior of the Ca2+ signal.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources