Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 21;271(25):14964-70.
doi: 10.1074/jbc.271.25.14964.

Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase

Affiliations
Free article

Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase

L G Reddy et al. J Biol Chem. .
Free article

Abstract

Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-dependent protein kinase has been proposed to provide additional regulation. To investigate these effects in detail, we have purified Ca2+-ATPase from cardiac sarcoplasmic reticulum using affinity chromatography and reconstituted it with purified, recombinant phospholamban. The resulting proteoliposomes had high rates of calcium transport, which was tightly coupled to ATP hydrolysis (approximately 1.7 calcium ions transported per ATP molecule hydrolyzed). Co-reconstitution with phospholamban suppressed both calcium uptake and ATPase activities by approximately 50%, and this suppression was fully relieved by a phospholamban monoclonal antibody or by phosphorylation either with cAMP-dependent protein kinase or with calcium/calmodulin-dependent protein kinase. These effects were consistent with a change in the apparent calcium affinity of Ca2+-ATPase and not with a change in Vmax. Neither the purified, reconstituted cardiac Ca2+-ATPase nor the Ca2+-ATPase in longitudinal cardiac sarcoplasmic reticulum vesicles was a substrate for calcium/calmodulin-dependent protein kinase, and accordingly, we found no effect of calcium/calmodulin-dependent protein kinase phosphorylation on Vmax for calcium transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources