Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul 12;271(28):16586-90.
doi: 10.1074/jbc.271.28.16586.

Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase

Affiliations
Free article

Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase

J Abe et al. J Biol Chem. .
Free article

Abstract

Mitogen-activated protein (MAP) kinases are a multigene family activated by many extracellular stimuli. There are three groups of MAP kinases based on their dual phosphorylation motifs, TEY, TPY, and TGY, which are termed extracellular signal-regulated protein kinases (ERK1/2), c-Jun N-terminal kinases, and p38, respectively. A new MAP kinase family member termed Big MAP kinase 1 (BMK1) or ERK5 was recently cloned. BMK1 has a TEY sequence similar to ERK1/2 but has unique COOH-terminal and loop-12 domains. To define BMK1 regulation, its activation in cultured rat vascular smooth muscle cells was characterized. Angiotensin II, phorbol ester, platelet-derived growth factor, and tumor necrosis factor-alpha were the strongest stimuli for ERK1/2 but were weak activators of BMK1. In contrast, H2O2 caused concentration-dependent activation of BMK1 but not ERK1/2. Sorbitol activated both BMK1 and ERK1/2. BMK1 activation by H2O2 was calcium-dependent and appeared ubiquitous as shown by stimulation in human skin fibroblasts, human vascular smooth muscle cells, and human umbilical vein endothelial cells. These findings demonstrate that activation of BMK1 is different from ERK1/2 and suggest an important role for BMK1 as a redox-sensitive kinase.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources