Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex
- PMID: 8663362
- DOI: 10.1074/jbc.271.30.18007
Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex
Abstract
The crystal structure of the ternary porcine lipase-colipase-tetra ethylene glycol monooctyl ether (TGME) complex has been determined at 2.8 A resolution. The crystals belong to the cubic space group F23 with a = 289.1 A and display a strong pseudo-symmetry corresponding to a P23 lattice. Unexpectedly, the crystalline two-domain lipase is found in its open configuration. This indicates that in the presence of colipase, pure micelles of the nonionic detergent TGME are able to activate the enzyme; a process that includes the movement of an N-terminal domain loop (the flap). The effects of TGME and colipase have been confirmed by chemical modification of the active site serine residue using diisopropyl p-nitrophenylphosphate (E600). In addition, the presence of a TGME molecule tightly bound to the active site pocket shows that TGME acts as a substrate analog, thus possibly explaining the inhibitory effect of this nonionic detergent on emulsified substrate hydrolysis at submicellar concentrations. A comparison of the lipase-colipase interactions between our porcine complex and the human-porcine complex (van Tilbeurgh, H., Egloff, M.-P., Martinez, C., Rugani, N., Verger, R., and Cambillau, C.(1993) Nature 362, 814-820) indicates that except for one salt bridge interaction, they are conserved. Analysis of the superimposed complexes shows a 5.4 degrees rotation on the relative position of the N-terminal domains excepting the flap that moves in a concerted fashion with the C-terminal domain. This flexibility may be important for the binding of the complex to the water-lipid interface.
Similar articles
-
Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase.Protein Sci. 1995 Jan;4(1):44-57. doi: 10.1002/pro.5560040107. Protein Sci. 1995. PMID: 7773176 Free PMC article.
-
Neutron crystallographic evidence of lipase-colipase complex activation by a micelle.EMBO J. 1997 Sep 15;16(18):5531-6. doi: 10.1093/emboj/16.18.5531. EMBO J. 1997. PMID: 9312012 Free PMC article.
-
Colipase stabilizes the lid domain of pancreatic triglyceride lipase.J Biol Chem. 1997 Jan 3;272(1):9-12. doi: 10.1074/jbc.272.1.9. J Biol Chem. 1997. PMID: 8995215
-
Colipase: structure and interaction with pancreatic lipase.Biochim Biophys Acta. 1999 Nov 23;1441(2-3):173-84. doi: 10.1016/s1388-1981(99)00149-3. Biochim Biophys Acta. 1999. PMID: 10570245 Review.
-
[Recent findings on pancreatic lipase and colipase].Diabete Metab. 1984 Jan;10(1):52-62. Diabete Metab. 1984. PMID: 6373427 Review. French.
Cited by
-
Effect of nonionic surfactants on Rhizopus homothallicus lipase activity: a comparative kinetic study.Mol Biotechnol. 2007 Mar;35(3):205-14. doi: 10.1007/BF02686006. Mol Biotechnol. 2007. PMID: 17652784
-
Effects of surfactants on lipase structure, activity, and inhibition.Pharm Res. 2011 Aug;28(8):1831-42. doi: 10.1007/s11095-010-0362-9. Epub 2011 Jan 14. Pharm Res. 2011. PMID: 21234659 Review.
-
In vitro studies of the effects of HAART drugs and excipients on activity of digestive enzymes.Pharm Res. 2004 Mar;21(3):420-7. doi: 10.1023/B:PHAM.0000019294.03188.cf. Pharm Res. 2004. PMID: 15070091 Free PMC article.
-
Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose.ACS Nano. 2018 Jul 24;12(7):6469-6479. doi: 10.1021/acsnano.8b03074. Epub 2018 Jun 12. ACS Nano. 2018. PMID: 29874029 Free PMC article.
-
Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions.Molecules. 2017 Apr 22;22(4):669. doi: 10.3390/molecules22040669. Molecules. 2017. PMID: 28441731 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases