Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis
- PMID: 8663364
- DOI: 10.1074/jbc.271.30.17837
Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis
Abstract
The vitamin K-dependent carboxylase, a constituent of the endoplasmic reticulum membrane, catalyzes the conversion of reduced vitamin K to vitamin K epoxide and the concomitant conversion of glutamic acid to gamma-carboxyglutamic acid. To study structure-function relationships in the enzyme, seventeen clusters of charged residues of the bovine gamma-glutamyl carboxylase were substituted with alanines using site-specific mutagenesis. Wild-type and mutant carboxylase species were expressed in Chinese hamster ovary cells with an immunodetectable octapeptide inserted at their amino-terminal ends. Out of 17 mutant carboxylase species that contain a total of 41 charged residue to alanine substitutions, K217A/K218A (CBX217/218), R234A/H235A (CBX234/235), R359A/H360A/K361A (CBX359/360/361), R406A/H408A (CBX406/408), and R513A/K515A (CBX513/515) had impaired carboxylase activity compared with the wild-type enzyme. The vitamin K epoxidase activities of these mutants were reduced in parallel with the carboxylase activities. CBX217/218 appears to be inactive. High propeptide concentrations were required for stimulation of carboxylation of FLEEL by CBX234/235, CBX406/408, and CBX513/515, suggesting defects in the propeptide binding site. CBX359/360/361 showed normal affinity for the propeptide, FLEEL, proPT28, and vitamin K hydroquinone but exhibited a low catalytic rate for carboxylation. These results suggest that residue 217, residue 218, or both are either critical for catalysis or for maintaining the structure of a catalytically active enzyme. Regions around residues 234, 406, and 513 define in part the propeptide binding site, while the regions around residue 359 are involved in catalysis.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
