Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jul 26;271(30):18188-93.
doi: 10.1074/jbc.271.30.18188.

Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent

Affiliations
Free article
Comparative Study

Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent

D Derossi et al. J Biol Chem. .
Free article

Abstract

We have recently reported that a 16-amino acid long polypeptide corresponding to the third helix of the DNA binding domain (homeodomain) of Antennapedia, a Drosophila transcription factor, is internalized by cells in culture (Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A.(1994) J. Biol. Chem. 269, 10444-10450). The capture of the homeodomain and of its third helix at temperatures below 10 degrees C raised the problem of the mechanism of internalization. The present demonstration, that a reverse helix and a helix composed of D-enantiomers still translocate across biological membranes at 4 and 37 degrees C strongly suggests that the third helix of the homeodomain is internalized by a receptor-independent mechanism. The finding that introducing 1 or 3 prolines in the structure does not hamper internalization also demonstrates that the alpha-helical structure is not necessary. The data presented are compatible with a translocation process based on the establishment of direct interactions with the membrane phospholipids. The third helix of the homeodomain has been used successfully to address biologically active substances to the cytoplasm and nucleus of cells in culture (Théodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P., Chneiweiss, H., Godement, P., and Prochiantz, A.(1995) J. Neurosci. 15, 7158-7167). Therefore, in addition to their physiological implications (Prochiantz, A., and Théodore, L.(1995) BioEssays 17, 39-45), the present results open the way to the molecular design of cellular vectors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources