Conformational changes in the Escherichia coli ATP synthase (ECF1F0) monitored by nucleotide-dependent differences in the reactivity of Cys-87 of the gamma subunit in the mutant betaGlu-381 --> Ala
- PMID: 8663500
- DOI: 10.1074/jbc.271.30.17986
Conformational changes in the Escherichia coli ATP synthase (ECF1F0) monitored by nucleotide-dependent differences in the reactivity of Cys-87 of the gamma subunit in the mutant betaGlu-381 --> Ala
Abstract
Cys-87, one of two intrinsic cysteines of the gamma subunit of the Escherichia coli ATP synthase (ECF1F0), is in a short segment of this subunit that binds to the bottom domain of a beta subunit close to a glutamate (Glu-381). Cys-87 was unreactive to maleimides under all conditions in wild-type ECF1 and ECF1F0 but became reactive when Glu-381 of beta was replaced by a cysteine or alanine. The reactivity of Cys-87 with maleimides was nucleotide-dependent, occurring with ATP or ADP + EDTA in catalytic sites, in the presence of AMP.PNP + Mg2+ but not with ADP + Mg2+ bound, whether Pi was present or not, and not when nucleotide binding sites were empty. Binding of N-ethylmaleimide had no effect, whereas 7-diethyl-amino-3-(4'-maleimidylphenyl)-4-methylcoumarin increased the ATPase activity of ECF1 more than 2-fold by reaction with Cys-87. In ECF1F0, these reagents inhibited activity. The nucleotide dependence of the reaction of Cys-87 of the gamma subunit depended on the presence of the epsilon subunit. In epsilon subunit-free ECF1, maleimides reacted with Cys-87 under all nucleotide conditions, including when catalytic sites were empty. These results are discussed in terms of nucleotide-dependent movements of the gamma subunit during functioning of the F1F0-type ATPase.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous