Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar 15;236(3):772-7.
doi: 10.1111/j.1432-1033.1996.t01-1-00772.x.

Direct activating effects of dexamethasone on glycogen metabolizing enzymes in primary cultured rat hepatocytes

Affiliations
Free article

Direct activating effects of dexamethasone on glycogen metabolizing enzymes in primary cultured rat hepatocytes

S Baqué et al. Eur J Biochem. .
Free article

Abstract

The direct effects of dexamethasone on glycogen synthase and phosphorylase and glycogen content have been investigated in primary cultured rat hepatocytes. Dexamethasone induced the transient translocation of glycogen synthase from the soluble to the 10000xg pelletable fraction and the activation of this enzyme, although more significant, longer-standing activation was achieved in the pelletable fraction. Neither total glycogen synthase content nor glycogen synthase mRNA levels were modified. Dexamethasone also caused the sustained activation (up to 6h) of glycogen phosphorylase, which was not accompanied by an increase in its mRNA level. Glycogen cell content and the incorporation of (14C) glucose into glycogen decreased after dexamethasone treatment. The data show that dexamethasone, unlike other glycogenolytic hormones, at concentrations of 10 nM or higher, stimulate hepatocyte glycogenolysis without inducing the inverse coupling of synthase and phosphorylase. The co-existence of active forms of both glycogen synthase and phosphorylase promoted by dexamethasone leads to a situation that is analogous to that of the fasted liver.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources