Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Dec;28(12):1493-503.
doi: 10.1016/0021-9290(95)00097-6.

Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro

Affiliations
Comparative Study

Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro

J Roelofsen et al. J Biomech. 1995 Dec.

Abstract

In a previous study of the cellular mechanism underlaying Wolff's law we showed that mechanical stimulation by intermittent hydrostatic compression (IHC) increases bone formation in cultured fetal mouse calvariae compared to non-stimulated cultures. To test whether mechanical stimuli may modulate bone-specific gene expression, we studied the effect of IHC on alkaline phosphatase (AP) expression and enzyme activity as well as collagen and actin mRNA levels in neonatal mouse calvariae and calvarial bone cells. Two cell populations, one resembling osteoprogenitor (OPR) cells and another resembling osteoblasts (OB) were obtained from calvariae by sequential digestion. IHC was applied by intermittently (0.3 Hz) compressing the gas- phase of a closed culture chamber (peak stress 13kPa, peak stress rate 32.5 kPas-1). In control cultures of calvariae as well as OB and OPR cells, AP activity and AP-, collagen-, and actin-mRNA levels all decreased after one or more days, with the exception of OPR cell collagen expression which increased during culture. IHC treatment upregulated AP, collagen and actin expression and AP activity in calvariae and OB cells, but decreased collagen expression in OPR cells. These results suggest that treatment with IHC promotes the osteoblastic phenotype in bone organ cultures and in osteoblasts. Osteoprogenitor cells seem to react somewhat differently to mechanical stress than osteoblasts. The loss of bone-specific gene expression under control culture conditions, in the absence of mechanical stimuli, suggests that the mechanical environment is important in maintaining the differentiated phenotype of bone cells, and that IHC treatment partially restores this environment in bone cell- and organ cultures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources