Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 1;156(11):4422-8.

Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes

Affiliations
  • PMID: 8666816

Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes

L C Meagher et al. J Immunol. .

Abstract

Eosinophils and neutrophils are closely related, terminally differentiated cells that in vitro undergo constitutive cell death by apoptosis. The onset of apoptosis in both cell types can be delayed by hemopoietins and inflammatory mediators. Although there have been a number of reports demonstrating that glucocorticoids (in particular dexamethasone) antagonize the eosinophil life-prolonging effects of hemopoietins, direct effects of dexamethasone on eosinophil apoptosis have not been documented. In this study we examined the direct effects of glucocorticoids on eosinophil and neutrophil apoptosis in light of their common therapeutic use as anti-inflammatory and anti-allergic/hypereosinophilic agents. We found that treatment with dexamethasone induced eosinophil apoptosis. In contrast, dexamethasone was a potent inhibitor of neutrophil apoptosis. The effect of dexamethasone on both cell types was mediated through the glucocorticoid receptor, i.e., it was abolished by the glucocorticoid receptor antagonist RU38486. This is the first description of an agent that promotes eosinophil apoptosis while inhibiting neutrophil apoptosis, and thus presents a novel approach to the study of control of apoptosis in these closely related cell types as well as increases our understanding of the clinical action of glucocorticoids in inflammation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources