Informational properties of neural nets performing algorithmic and logical tasks
- PMID: 8672562
- DOI: 10.1007/BF00209426
Informational properties of neural nets performing algorithmic and logical tasks
Abstract
It is argued that the genetic information necessary to encode an algorithmic neural processor tutoring an otherwise randomly connected biological neural net is represented by the entropy of the analogous minimal Turing machine. Such a near-minimal machine is constructed performing the whole range of bivalent propositional logic in n variables. Neural nets computing the same task are presented; their informational entropy can be gauged with reference to the analogous Turing machine. It is also shown that nets with one hidden layer can be trained to perform algorithms solving propositional logic by error back-propagation.
Similar articles
-
Multi/infinite dimensional neural networks, multi/infinite dimensional logic theory.Int J Neural Syst. 2005 Jun;15(3):223-35. doi: 10.1142/S0129065705000190. Int J Neural Syst. 2005. PMID: 16013092
-
Logic in a dynamic brain.Bull Math Biol. 2011 Feb;73(2):373-97. doi: 10.1007/s11538-010-9561-0. Epub 2010 Sep 4. Bull Math Biol. 2011. PMID: 20821067
-
A new method for the re-implementation of threshold logic functions with cellular neural networks.Int J Neural Syst. 2008 Aug;18(4):293-303. doi: 10.1142/S0129065708001609. Int J Neural Syst. 2008. PMID: 18763729
-
Learning with hidden variables.Curr Opin Neurobiol. 2015 Dec;35:110-8. doi: 10.1016/j.conb.2015.07.006. Epub 2015 Aug 25. Curr Opin Neurobiol. 2015. PMID: 26298193 Review.
-
Methods of information theory and algorithmic complexity for network biology.Semin Cell Dev Biol. 2016 Mar;51:32-43. doi: 10.1016/j.semcdb.2016.01.011. Epub 2016 Jan 21. Semin Cell Dev Biol. 2016. PMID: 26802516 Review.