Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul 5;260(1):1-8.
doi: 10.1006/jmbi.1996.0377.

The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing

Affiliations

The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing

T A Blank et al. J Mol Biol. .

Abstract

The distances between the nucleosomes in eukaryotic chromatin that define the nucleosome repeat length are not universally constant, but vary between different cell types and activity states. We have previously established in a cell-free system that nucleosome spacing is essentially governed by electrostatic principles, most likely through charge neutralisation of linker DNA by cations either free in solution or on flexible histone domains. On the basis of the tight correlation between the parameters that affect nucleosome spacing and those that influence the folding of the nucleosomal fiber into higher order structures, we suggested that there is an intimate relationship between nucleosome spacing and chromatin folding. Here we describe DNA topology as a new parameter that influences nucleosome spacing in a predictable way. The effects of topology and cation concentrations integrate to define the final repeat length. The phenomenon of "nucleosome phasing" describes nucleosomal arrays that are generated through positioning of nucleosomes by the underlying DNA sequence. To determine the relative contribution of DNA sequence and the parameters intrinsic to physiological chromatin for nucleosomal positions, we created situations where these two principles were in conflict. We found that nucleosome repeats directed by a strong positioning sequence are dominated by the cation-induced spacing as well as by the effects of topology. We conclude that the DNA sequence effects nucleosome spacing only by "fine tuning" of nucleosome positions within the framework of a repeat pattern that is established by other principles.

PubMed Disclaimer

Publication types

LinkOut - more resources