Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 12;251(3):352-7.
doi: 10.1007/BF02172526.

Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine

Affiliations

Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine

B A Bridges et al. Mol Gen Genet. .

Abstract

MutY specifies a DNA glycosylase that removes adenines unnaturally paired with various bases including oxidized derivatives of guanine, such as 7,8-dihydro-8-oxoguanine (8-oxoG). The rate of mutation in starved Escherichia coli cells is markedly raised in mutY mutants defective in this glycosylase. As predicted, the mutations produced include G to T transversions. Bacteria carrying mutM or fpg-1 mutations (defective in Fapy glycosylase, which removes oxidized guanine residues such as 8-oxoG) show little or no enhancement of mutation under starvation conditions. When present together with mutY, however, mutM clearly further enhances the rate of mutation in starved cells. Plasmids resulting in overproduction of MutY or Fapy glycosylases reduce the rate of mutation in starved cells. We conclude that, in non-growing bacteria, oxidized guanine residues, including 8-oxoG, constitute an important component of spontaneous mutation. Addition of catalase to the plates did not reduce the mutant yield, indicating that extracellular hydrogen peroxide is not involved in the production of the premutational damage. Singlet oxygen, known to give rise to 8-oxoG, may be the ultimate oxidative species.

PubMed Disclaimer

References

    1. Mutat Res. 1995 May;336(3):257-67 - PubMed
    1. Chem Biol Interact. 1991;80(3):239-60 - PubMed
    1. J Bacteriol. 1950 Jul;60(1):17-28 - PubMed
    1. Genetics. 1992 Oct;132(2):303-10 - PubMed
    1. Proc Natl Acad Sci U S A. 1966 Feb;55(2):274-81 - PubMed

MeSH terms

LinkOut - more resources