Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul 2;35(26):8686-95.
doi: 10.1021/bi960389w.

Regiospecificity of aminoglycoside phosphotransferase from Enterococci and Staphylococci (APH(3')-IIIa)

Affiliations

Regiospecificity of aminoglycoside phosphotransferase from Enterococci and Staphylococci (APH(3')-IIIa)

P R Thompson et al. Biochemistry. .

Abstract

The broad-spectrum aminoglycoside phosphotransferase, APH(3')-IIIa, confers resistance to several aminoglycoside antibiotics in opportunistic pathogens of the genera Staphylococcus and Enterococcus. The profile of the drug resistance phenotype suggested that the enzyme would transfer a phosphate group from ATP to the 3'-hydroxyl of aminoglycosides. In addition, resistance to the 3'-deoxyaminoglycoside antibiotic, lividomycin A, suggested possible transfer to the 5"-hydroxyl of the ribose [Trieu-Cuot, P., & Courvalin, P. (1983) Gene 23, 331-341]. Using purified overexpressed enzyme, we have prepared and purified the products of APH(3')-IIIa-dependent phosphorylation of several of aminoglycoside antibiotics. Mass spectral analysis revealed that 4,6-disubstituted aminocyclitol antibiotics such as amikacin and kanamycin are monophosphorylated, while 4,5-disubstituted aminoglycosides such as butirosin A, ribostamycin, and neomycin B are both mono- and diphosphorylated by APH(3')-IIIa. Using a series of one- and two-dimensional 1H, 13C, and 31P NMR experiments, we have unambiguously assigned the regiospecificity of phosphoryl transfer to several antibiotics. The 4,6-disubstituted aminocyclitol antibiotics are exclusively phosphorylated at the 3'-OH hydroxyl, and the 4,5-disubstituted aminocyclitol antibiotics can be phosphorylated at both the 3'- and 5"-hydroxyls. The first phosphorylation can occur on either the 3'- or 5"-hydroxyl group of neomycin B or butirosin A. Initial phosphotransfer to the 3'-position predominates for butirosin while the 5"-OH is favored for neomycin. These results open the potential for the rational design of aminoglycoside kinase inhibitors based on functionalization of either the 6-aminohexose or the pentose rings of aminoglycoside antibiotics.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources