Chylomicron assembly and catabolism: role of apolipoproteins and receptors
- PMID: 8679680
- DOI: 10.1016/0005-2760(96)00041-0
Chylomicron assembly and catabolism: role of apolipoproteins and receptors
Abstract
Chylomicrons are lipoproteins synthesized exclusively by the intestine to transport dietary fat and fat-soluble vitamins. Synthesis of apoB48, a translational product of the apob gene, is required for the assembly of chylomicrons. The apob gene transcription in the intestine results in 14 and 7 kb mRNAs. These mRNAs are post-transcriptionally edited creating a stop codon. The edited mRNAs chylomicrons from the shorter apoB48 peptide remains to be elucidated. In addition, the roles of proteins involved in the assembly pathway, e.g. apobec-1, MTP and apoA-IV, needs to be studied. Cloning of enzymes involved in the intestinal biosynthesis of triglycerides will be crucial to fully appreciate the assembly of chylomicrons. There is a need for cell culture and transgenic animal models that can be used for intestinal lipoprotein assembly. The catabolism of chylomicrons is far more complex and efficient than the catabolism of VLDL. Even though the major steps involved in the catabolism of chylomicrons are now known, the determinants for apolipoprotein exchange, processing of remnants in the space of Disse, as well as the mechanism of uptake of these particles by extra-hepatic tissue needs further exploration.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
