Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jul;122(7):2295-301.
doi: 10.1242/dev.122.7.2295.

Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos

Affiliations
Comparative Study

Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos

A Chitnis et al. Development. 1996 Jul.

Abstract

We have compared the roles of XASH-3 and NeuroD, two basic helix-loop-helix transcription factors, in the formation of primary neurons in early Xenopus embryos. When ectopically expressed in Xenopus embryos, XASH-3 and NeuroD induce ectopic primary neurons in very different spatial patterns. We show that the pattern of primary neurons induced by XASH-3 and NeuroD can be accounted for by a difference in their sensitivity to inhibitory interactions mediated by the neurogenic genes, X-Delta-1 and X-Notch-1. Both NeuroD and XASH-3 promote the expression of the inhibitory ligand, X-Delta-1. However, XASH-3 appears to be sensitive to the inhibitory effects of X-Delta-1 while NeuroD is much less so. Consequently only a subset of cells that ectopically express XASH-3 eventually form neurons, giving a scattered pattern, while the ectopic expression of NeuroD leads to a relatively dense pattern of ectopic neurons. We propose that differences in the sensitivity of XASH-3 and NeuroD to lateral inhibition play an important role during their respective roles in neuronal determination and differentiation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources