Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 16;273(5277):956-9.
doi: 10.1126/science.273.5277.956.

Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2

Affiliations

Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2

D W Hilgemann et al. Science. .

Abstract

Cardiac Na+,Ca2+ exchange is activated by a mechanism that requires hydrolysis of adenosine triphosphate (ATP) but is not mediated by protein kinases. In giant cardiac membrane patches, ATP acted to generate phosphatidylinositol-4,5-bisphosphate (PIP2) from phosphatidylinositol (PI). The action of ATP was abolished by a PI-specific phospholipase C (PLC) and recovered after addition of exogenous PI; it was reversed by a PIP2-specific PLC; and it was mimicked by exogenous PIP2. High concentrations of free Ca2+ (5 to 20 microM) accelerated reversal of the ATP effect, and PLC activity in myocyte membranes was activated with a similar Ca2+ dependence. Aluminum reversed the ATP effect by binding with high affinity to PIP2. ATP-inhibited potassium channels (KATP) were also sensitive to PIP2, whereas Na+,K+ pumps and Na+ channels were not. Thus, PIP2 may be an important regulator of both ion transporters and channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources