Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;19(2):157-65.
doi: 10.1016/s0143-4160(96)90084-6.

The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+ release

Affiliations

The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+ release

T Haller et al. Cell Calcium. 1996 Feb.

Abstract

To test for a possible role of lysosomes in intracellular Ca2+ homeostasis, the effects of glycyl-L-phenylalanine-beta-naphthylamide (GPN), known to permeabilize these organelles by osmotic swelling, were studied in single MDCK cells. Fluorescence of acridine orange, rhodol green dextran, lysotracker green and FITC-dextran indicated that GPN (0.2 mmol/l) elicited a reversible permeabilization of lysosomes. Cytosolic Ca2+ ([Ca2+]i) as determined by Fura-2 fluorescence increased from 60 +/- 11 to 534 +/- 66 nmol/l (n = 41) in the presence of GPN. Whereas only a single intracellular Ca2+ release could be induced by GPN in a Ca(2+)-free perfusate, repetitive release could be evoked in Ca2+ containing solutions suggesting reuptake of Ca2+ into lysosomal stores. GPN-induced Ca2+ release was blunted after pretreatment with thapsigargin (TG), an inhibitor of Ca(2+)-ATPase, or repeated applications of ATP inducing Ca2+ release from inositol trisphosphate (InsP3) sensitive Ca2+ stores. The effect of ATP on Ca2+ release was, however, not abolished by preceding GPN treatment. GPN-induced Ca2+ release from lysosomes was independent of InsP3 formation or Ca(2+)-induced Ca2+ release, since it was unaffected by the phospholipase C inhibitor U-73, 122 or by caffeine and ruthenium red. These results suggest that Ca2+ largely accumulates in lysosomal vesicles. Moreover, these organelles seem to be part or functionally coupled with InsP3-sensitive Ca2+ stores.

PubMed Disclaimer

Publication types

LinkOut - more resources