Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;23(12):1417-25.

Biotransformation of amitriptyline by Cunninghamella elegans

Affiliations
  • PMID: 8689954

Biotransformation of amitriptyline by Cunninghamella elegans

D Zhang et al. Drug Metab Dispos. 1995 Dec.

Abstract

A fungal biotransformation system as an in vitro model for mammalian drug metabolism was investigated. Amitriptyline, a widely used antidepressant, was effectively biotransformed within 72 hr by the filamentous fungus, Cunninghamella elegans. Eight major metabolites in HPLC elution order (11-hydroxyamitriptyline N-oxide, 11-hydroxynortriptyline, 11-hydroxyamitriptyline, 10-hydroxyamitriptyline, 3-hydroxyamitriptyline, 2-hydroxyamitriptyline, nortriptyline, and amitriptyline N-oxide) were produced at estimated molar ratios of 2:1:10:0.6:0.1:1.2.5:0.5, respectively. These metabolites were isolated by HPLC and identified by UV/MS analyses, as well as NMR spectroscopic analysis for most of these metabolites. In some cases, they were also compared with authentic standards. Glucose, culture age, and substrate concentration significantly affected the extent of amitriptyline metabolism. Kinetic studies indicated that nortriptyline and 11-hydroxyamitriptyline were produced as initial major metabolites. The hydroxylated metabolite was excreted from mycelia, but amitriptyline and its N-demethylated metabolite, nortriptyline, were not. An 18O2 labeling experiment showed that the oxygen atoms in 11-hydroxyamitriptyline and 2-hydroxyamitriptyline were derived from molecular oxygen. The cytochrome P450 inhibitors SKF 525-A (1.5 mM), metyrapone (2.0 mM), and 1-aminobenzotriazole (1.0 mM) inhibited the biotransformations of amitriptyline by 50, 75, and 95%, respectively. A microsomal preparation was shown to catalyze the 11-hydroxylation of amitriptyline, which was inhibited by SKF 525-A and carbon monoxide. The similarities of amitriptyline metabolism in C. elegans and in humans and rats are discussed.

PubMed Disclaimer

Publication types