Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul;112(1):8-13.
doi: 10.1016/s0022-5223(96)70171-x.

Chronic hypoxia induces adaptive metabolic changes in neonatal myocardium

Affiliations
Free article

Chronic hypoxia induces adaptive metabolic changes in neonatal myocardium

M D Plunkett et al. J Thorac Cardiovasc Surg. 1996 Jul.
Free article

Abstract

The effect of chronic hypoxia on neonatal myocardial metabolism remains undefined. With a new neonatal piglet model, we determined changes in myocardial metabolism during global ischemia after chronic hypoxia. Five-day-old piglets (N = 30) were randomly assigned to two groups and exposed to an atmosphere of 8% oxygen or to room air for 28 days before they were killed. Left ventricular myocardium was then analyzed at control and at 15-minute intervals during 60 minutes of global normothermic ischemia to determine high-energy phosphate levels, glycogen stores, and lactate accumulation. Time to peak ischemic myocardial contracture was measured with intramyocardial needle-tipped Millar catheters as a marker of the onset of irreversible ischemic injury. Results showed an initially greater level of myocardial adenosine triphosphate in the hypoxic group (27 +/- 1.2 vs 19 +/- 1.8 micromol/gm dry wt, p = 0.001) and a delay in adenosine triphosphate depletion during 60 minutes of global ischemia compared with the control group. Initial energy charge ratios (1/2 adenosine diphosphate + adenosine triphosphate/adenosine monophosphate + adenosine diphosphate + adenosine triphosphate) were also greater in the hypoxic group (0.96 +/- 0.01 vs 0.81 +/- 0.04, p = 0.01) and remained so throughout global ischemia. Initial glycogen stores were greater in the hypoxic group (273 +/- 13.3 vs 215 +/- 14.7 micromol/gm dry weight, p = 0.02) when compared with the control group. Lactate levels in the hypoxic group were initially higher (19.1 +/- 6.4 vs 8.9 +/- 3.1 micromol/gm dry weight, p = 0.001) compared with control levels and remained elevated throughout 60 minutes of ischemia. Time to peak ischemic contracture was prolonged in the hypoxic group (69.5 +/- 1.8 vs 48.9 +/- 1.4 minutes, p = 0.001) compared with the controls group. These data show that chronic hypoxia results in significant myocardial metabolic adaptive changes, which in turn result in an improved tolerance to severe normothermic ischemia. These beneficial effects are associated with elevated baseline glycogen storage levels and an accelerated rate of anaerobic glycolysis during ischemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources