Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul 26;1302(2):145-52.
doi: 10.1016/0005-2760(96)00052-5.

The oxysterols cholest-5-ene-3 beta,4 alpha-diol, cholest-5-ene-3 beta,4 beta-diol and cholestane-3 beta,5 alpha,6 alpha-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaques

Affiliations

The oxysterols cholest-5-ene-3 beta,4 alpha-diol, cholest-5-ene-3 beta,4 beta-diol and cholestane-3 beta,5 alpha,6 alpha-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaques

O Breuer et al. Biochim Biophys Acta. .

Abstract

Isolated human low density lipoprotein (LDL) was oxidized with either cupric ions or soybean lipoxygenase and linoleic acid. Cholesterol oxidation products (oxysterols) were determined by isotope dilution gas chromatography-mass spectrometry. A new cholestane-3,5,6-triol isomer, cholestane-3 beta,5 alpha,6 alpha-triol, which has not previously been recognized as a cholesterol autoxidation product, was found at similar concentrations as the well-known cytotoxic cholestane-3 beta,5 alpha,6 beta-triol during both copper- and lipoxygenase-mediated LDL oxidation. Furthermore, two epimeric cholest-5-ene-3 beta,4-diols were identified in the oxidized LDL at similar concentrations. These two isomers were also identified in human atherosclerotic tissue in a ratio of 1:1 at a concentration more than 10-times higher than in non-atherosclerotic vessels. In vitro oxidation of LDL under an 18O2 atmosphere revealed that molecular oxygen was the only source of the oxygen functions at C-4 in the cholest-5-ene-3 beta,4-diols. Taken together, these findings suggest that the cholest-5-ene-3 beta,4-diols in atherosclerotic plaques are formed by autoxidation.

PubMed Disclaimer

Publication types

LinkOut - more resources