Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 15;52(6):600-4.
doi: 10.1007/BF01969737.

Antibacterial effect of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1, 4-naphthoquinone-4-imine on Staphylococcus aureus

Affiliations

Antibacterial effect of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1, 4-naphthoquinone-4-imine on Staphylococcus aureus

P Bogdanov et al. Experientia. .

Abstract

The mechanism by which a new naphthoquinone derivative, the 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1, 4-naphthoquinone-4-imine (INQI-E) has antibacterial effect against Staphylococcus aureus was studied. The interaction of INQI-E with the bacteria was followed by absorption spectroscopy at 323 and 490 nm. The absorption band of INQI-E at 490 nm undergoes a hypochromic shift with a decrease of intensity. This effect was found to be reversible by oxygenation during the first hours of incubation. The participation of an oxidation-reduction process related to the respiratory chain was demonstrated by oxygen consumption. An increase in O2 uptake and inhibition of S. aureus growth was observed. Experiments with three inhibitors of the respiratory chain demonstrated that the pathway induced by INQI-E was antimycin-resistant and KCN- and salicylhydroxamic acid (SHAM)-sensitive, which suggests that INQI-E is capable of diverting the normal electron flow to an alternate superoxide-producing route. On the other hand, experiments with Tiron, a specific scavenger of superoxide, hindered the effect of INQI-E against S. aureus, indicating that the inhibitory growth effect of this quinone-imine is mainly due to the production of the cytotoxic superoxide radical.

PubMed Disclaimer

Similar articles

References

    1. Experientia. 1990 May 15;46(5):502-5 - PubMed
    1. J Appl Bacteriol. 1995 Apr;78(4):373-7 - PubMed
    1. J Pharm Sci. 1994 Mar;83(3):332-5 - PubMed
    1. Plant Physiol. 1987 Feb;83(2):278-82 - PubMed
    1. Arch Biochem Biophys. 1979 Sep;196(2):385-95 - PubMed

Publication types

MeSH terms

LinkOut - more resources