Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep 6;271(36):22003-16.
doi: 10.1074/jbc.271.36.22003.

Mechanisms of desensitization and resensitization of proteinase-activated receptor-2

Affiliations
Free article

Mechanisms of desensitization and resensitization of proteinase-activated receptor-2

S K Böhm et al. J Biol Chem. .
Free article

Abstract

Proteinase-activated receptor-2 (PAR-2) is a G-protein-coupled receptor that is expressed by intestinal epithelial cells, which are episodically exposed to pancreatic trypsin in the intestinal lumen. Trypsin cleaves PAR-2 to expose a tethered ligand, which irreversibly activates the receptor. Thus, PAR-2 may desensitize and resensitize by novel mechanisms. We examined these mechanisms in kidney epithelial cells, stably expressing human PAR-2, and intestinal epithelial cells, which naturally express PAR-2. Trypsin stimulated a prompt increase in [Ca2+]i, due to mobilization of intracellular Ca2+, followed by a sustained plateau, due to influx of extracellular Ca2+. Repeated application of trypsin caused marked desensitization of this response, which is due in part to (a) irreversible cleavage of the receptor by trypsin and (b) protein kinase C-mediated termination of signaling. Trypsin exposure resulted in internalization of PAR-2 into early endosomes and then lysosomes; but endocytosis was not the mechanism of rapid desensitization. Thus, activated PAR-2 is endocytosed and degraded. The Ca2+ response to trypsin resensitized by 60-90 min. Brefeldin A, which disrupted Golgi stores of PAR-2, and cycloheximide, which inhibited protein synthesis, markedly attenuated resensitization. Thus, PAR-2-mediated Ca2+ mobilization desensitizes by irreversible receptor cleavage, protein kinase C-mediated termination of signaling, and PAR-2 targeting to lysosomes. It resensitizes by mobilization of large Golgi stores and synthesis of new receptors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources