H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin
- PMID: 8703973
- DOI: 10.1016/0005-2736(96)00051-x
H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin
Abstract
The decay of the pH difference (delta pH) across soyabean phospholipid vesicular membrane (created by temperature jump), by the combined action of valinomycin and 2,4-dinitrophenol (DNP) has been monitored with the help of fluorescence from pyranine entrapped inside the vesicles under a variety of concentration conditions. The results suggest the following for the pH region of our interest (pH approximately 6 to pH approximately 8): (i) The rate limiting step in the proton transport cycle is not the transport of proton as DNPH, but the back transport of DNP- and the alkali metal ion M+ as Val-M(+)-DNP- across the membrane. The rate constant associated with the transport of the ternary complex has been estimated to be approximately 1.5 x 10(3) s-1. (ii) The dissociation constant of the ternary complex Val-M(+)-DNP- in the membrane are approximately 1 mM for M+ = K+ and approximately 0.001 mM for M+ = Na+. (iii) The reduction in the cation selectivity of valinomycin on complexing with DNP- is much more than that observed with the anionic form of carbonyl cyanide m-chlorophenylhydrazone (CCCP). The results also provide a verification of a corollary of Mitchell's hypothesis: an experimental strategy which enhances the delta pH decay rate should also be a strategy for the efficient uncoupling of oxidative and photophosphorylation.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical