Lesch-Nyhan syndrome: the synthesis of inosine 5'-phosphate in the hypoxanthine-guanine phosphoribosyltransferase-deficient erythrocyte by alternate biochemical pathways
- PMID: 870876
- DOI: 10.1203/00006450-197705000-00013
Lesch-Nyhan syndrome: the synthesis of inosine 5'-phosphate in the hypoxanthine-guanine phosphoribosyltransferase-deficient erythrocyte by alternate biochemical pathways
Abstract
Erythrocytes, obtained from a normal adult male and from a patient with Lesch-Nyhan syndrome, were incubated with [8-14C]adenine and [8-14C]hypoxanthine (Table 1). The labeled adenine was utilized to about the same extent for the synthesis of AMP by the normal subject's and the patient's erythrocytes. Deamination of AMP to IMP occurred to about the same extent in both samples. In contrast, hypoxanthine was utilized extensively for IMP synthesis in the normal erythrocyte only. The amount of total label in the IMP was about 100 times that of the Lesch-Nyhan erythrocyte, a consequence of the deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity in the syndrome. No significant labeling of the AMP occurred. When aliquots of erythrocytes from both sources were incubated with 4-amino-5-imidazolecarboxamide (AICA) and sodium [14C]formate, extensive labeling of the IMP occurred in normal and in Lesch-Nyhan erythrocytes. The data suggest that AICA serves as a substrate for the adenine phosphoribosyltransferase (APRT) of the Lesch-Nyhan erythrocyte and that the ribotide of AICA, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), undergoes formylation by labeled N10-formyl tetrahydrofolic acid formed from the reaction of sodium [14C]formate with the tetrahydrofolic acid of the cell. The formyl-AICAR undergoes ring closure to IMP by a series of reactions comparable to those described for the normal erythrocyte. When 5-amino-1-ribosyl-4-imidazolecarboxamide (rAICA) and sodium [14C]formate were incubated with erythrocyte suspensions, extensive utilization for IMP synthesis was also observed in normal erythrocytes and in erythrocytes from Lesch-Nyhan patients (Table 2). The reaction sequence is somewhat different from that of AICA. AICA is not a substrate for the purine nucleoside phosphorylase of rabbit or human erythrocytes. The mechanism of rAICA utilization is visualized as a direct phosphorylation of the ribosyl compound, possibly by the adenosine kinase of the human cell. The ribotide, AICAR, formed by this mechanism, undergoes formylation and ring closure, yielding IMP. The glutamine antagonist, diazooxonorleucine (DON), was added to aliquots of patients' cells incubated with rAICA and sodium [14C]formate. DON is an effective inhibitor of the conversion of IMP to GMP and its presence in an incubation suspension resulted in a somewhat greater radioactivity of the total cellular IMP. The extension of the current studies to Lesch-Nyhan cells in culture may serve to assist in the direct evaluation of the regulatory role of IMP in the de novo pathway of purine nucleotide biosynthesis. Because of the substrate requirements of the reactions, the metabolism of AICA and rAICA may also serve to differentiate the roles of purine nucleotides and of phosphoribosylpyrophosphate (PRPP) in the pathway regulation. The findings presented also offer a possible therapeutic approach to the early treatment of the disease in the afflicted neonate...
Similar articles
-
Overproduction of uric acid in hypoxanthine-guanine phosphoribosyltransferase deficiency. Contribution by impaired purine salvage.J Clin Invest. 1979 May;63(5):922-30. doi: 10.1172/JCI109392. J Clin Invest. 1979. PMID: 447834 Free PMC article.
-
Hypoxanthine-guanine phosphoribosyltransferase: characteristics of the mutant enzyme in erythrocytes from patients with the Lesch-Nyhan syndrome.J Clin Invest. 1972 Jul;51(7):1805-12. doi: 10.1172/JCI106982. J Clin Invest. 1972. PMID: 4624352 Free PMC article.
-
An alternate metabolic route for the synthesis of inosine 5'-phosphate (IMP) in the Lesch-Nyhan erythrocyte.Adv Exp Med Biol. 1977;76A:376-83. doi: 10.1007/978-1-4613-4223-6_48. Adv Exp Med Biol. 1977. PMID: 855717 No abstract available.
-
Defects of tetrahydrobiopterin synthesis and their possible relationship to a disorder of purine metabolism (the Lesch-Nyhan syndrome).Adv Enzyme Regul. 1985;23:25-58. doi: 10.1016/0065-2571(85)90039-1. Adv Enzyme Regul. 1985. PMID: 2866676 Review.
-
Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation, and neurotransmission in Lesch-Nyhan syndrome.Clin Neuropharmacol. 2005 Jan-Feb;28(1):28-37. doi: 10.1097/01.wnf.0000152043.36198.25. Clin Neuropharmacol. 2005. PMID: 15711436 Review.
Cited by
-
Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients.J Clin Invest. 1985 Dec;76(6):2416-9. doi: 10.1172/JCI112255. J Clin Invest. 1985. PMID: 4077987 Free PMC article.
-
New biomarkers for early diagnosis of Lesch-Nyhan disease revealed by metabolic analysis on a large cohort of patients.Orphanet J Rare Dis. 2015 Jan 23;10:7. doi: 10.1186/s13023-014-0219-0. Orphanet J Rare Dis. 2015. PMID: 25612837 Free PMC article.
-
Purine nucleoside phosphorylase dominates Influenza A virus replication and host hyperinflammation through purine salvage.Signal Transduct Target Ther. 2025 Jun 15;10(1):191. doi: 10.1038/s41392-025-02272-1. Signal Transduct Target Ther. 2025. PMID: 40517177 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources