Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;8(1):138-43.
doi: 10.1111/j.1460-9568.1996.tb01174.x.

DCG-IV selectively attenuates rapidly triggered NMDA-induced neurotoxicity in cortical neurons

Affiliations

DCG-IV selectively attenuates rapidly triggered NMDA-induced neurotoxicity in cortical neurons

A Buisson et al. Eur J Neurosci. 1996 Jan.

Abstract

Molecular cloning has revealed the existence of at least eight subtypes of metabotropic glutamate receptors (mGluRs). We examined the effect of (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV), a selective agonist of the mGluR 2/3 subtype, on excitotoxicity in mouse cortical cell cultures. Addition of DCG-IV to the exposure medium partially attenuated the rapidly triggered excitotoxic death induced by a 5 min exposure to 200 microM NMDA. This neuroprotective effect was reversed by coapplication of alpha-methyl-4-carboxyphenylglycine (MCPG), an antagonist of mGluRs, by pertussis toxin pretreatment and also by preincubation with dibutyryl cAMP, a stable analogue of cAMP. These results suggest that the activation of mGluR 2/3 is neuroprotective in our system. However, DCG-IV did not attenuate the slowly triggered neuronal death induced by 24 h exposure to low concentrations of NMDA, alpha-amino-1,3-cyclopentanedicarboxylic acid (AMPA) or kainate. The failure of DCG-IV to block slowly triggered NMDA neurotoxicity is likely due to weak NMDA agonist activity, as demonstrated in whole-cell recording.

PubMed Disclaimer

MeSH terms

LinkOut - more resources