Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995;154(1):63-78.
doi: 10.1159/000147752.

Epithelium-mesenchyme transition during neural crest development

Affiliations
Review

Epithelium-mesenchyme transition during neural crest development

J L Duband et al. Acta Anat (Basel). 1995.

Abstract

The neural crest is the organ system whose presence defines vertebrates. The onset of migration of neural crest cells is an archetypal epithelium to mesenchyme transition (EMT), and this event identifies the cell lineage. Little is known yet of the establishment of the neural crest, although the zinc finger gene Slug seems to be involved in specifying EMT competence. The details, especially the temporal order of events in neural crest EMT, vary between different species and between different axial levels, but several important features have emerged from observations in situ and experiments in vitro and in vivo. EMT seems to be strongly associated with decrease in cell-cell adhesion, and particularly with loss of N-cadherin on the surface of neural crest cells at the time of onset of migration. The related adhesion molecule T-cadherin is also present, but correlated changes have not yet been described, while the unrelated adhesion molecule N-CAM also declines on neural crest cells, but with a time course unrelated to EMT. The extracellular matrix is also important: EMT-related changes in matrix receptor (i.e. integrin) activity are recorded in avian crest cells, while the nature of the matrix itself changes in urodele amphibians. Changes in cell shape and in cell motility also occur at the time of EMT, consistent with changes in the cytoskeleton. These concerted changes can be triggered by TGF-beta family growth factors, of which dorsalin-I appears particularly important. These may act through pathways involving controlled alterations in phosphorylation to effect the complex of responses that make up EMT. Although much remains to be understood, the spatiotemporal definability of this system makes it a very useful model for studying EMTs in general.

PubMed Disclaimer

Publication types

LinkOut - more resources