Antibiotic resistance mechanisms of mutant EF-Tu species in Escherichia coli
- PMID: 8722034
- DOI: 10.1139/o95-126
Antibiotic resistance mechanisms of mutant EF-Tu species in Escherichia coli
Abstract
Analysis of antibiotic-resistant EF-Tu mutants has revealed a connection between resistance and structural elements that participate in the GTPase switching mechanism. Both random and site-directed mutagenesis methods have yielded sets of purified mutant EF-Tu resistant to kirromycin (kirT) or pulvomycin (pulT). All kirT mutations cluster in the interface of domain 1 and 3 of EF-Tu in its GTP-bound conformation, not in that of EF-Tu.GDP. Other evidence also suggests that kirromycin binds to the interface of wild-type EF-Tu, thereby jamming the GTPase switch. Various functional studies reveal two subsequent resistance mechanisms. The first hinders kirromycin binding to EF-Tu.GTP and the second occurs after GTP hydrolysis by rejection of bound kirromycin. All pulT mutations cluster in the three-domain junction interface of EF-Tu. GTP (which is an open hole in EF-Tu.GDP) and destabilize a salt-bridge network. Pulvomycin may bind nearby and overlap with tRNA binding. Mutations show that a D99-R230 salt bridge is not essential for the transduction of the GTPase switch signal from domain 1. In vivo and in vitro studies reveal that pulvomycin sensitivity is dominant over resistance. This demands a revision of the current view of the mechanism of pulvomycin inhibition of protein synthesis and may support a translation model with two EF-Tus on the ribosome. Several mutant EF-Tu species display altered behaviour towards aminoacyl-tRNA with interesting effects on translational accuracy. KirT EF-Tu(A375T) is able to reverse the streptomycin-dependent phenotype of a ribosomal protein S12 mutant strain to streptomycin sensitivity.
Similar articles
-
Pulvomycin-resistant mutants of E.coli elongation factor Tu.EMBO J. 1994 Nov 1;13(21):5113-20. doi: 10.1002/j.1460-2075.1994.tb06840.x. EMBO J. 1994. PMID: 7957075 Free PMC article.
-
The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli.EMBO J. 1994 Oct 17;13(20):4877-85. doi: 10.1002/j.1460-2075.1994.tb06815.x. EMBO J. 1994. PMID: 7525272 Free PMC article.
-
Substitution of Arg230 and Arg233 in Escherichia coli elongation factor Tu strongly enhances its pulvomycin resistance.Eur J Biochem. 1995 Feb 1;227(3):816-22. doi: 10.1111/j.1432-1033.1995.tb20206.x. Eur J Biochem. 1995. PMID: 7867642
-
Translational regulation by modifications of the elongation factor Tu.Folia Microbiol (Praha). 1999;44(2):131-41. doi: 10.1007/BF02816232. Folia Microbiol (Praha). 1999. PMID: 10588048 Review.
-
tRNA-ribosome interactions.Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1049-54. doi: 10.1139/o95-112. Biochem Cell Biol. 1995. PMID: 8722020 Review.
Cited by
-
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis.Microorganisms. 2022 Jul 6;10(7):1366. doi: 10.3390/microorganisms10071366. Microorganisms. 2022. PMID: 35889084 Free PMC article.
-
Linkage map of Escherichia coli K-12, edition 10: the traditional map.Microbiol Mol Biol Rev. 1998 Sep;62(3):814-984. doi: 10.1128/MMBR.62.3.814-984.1998. Microbiol Mol Biol Rev. 1998. PMID: 9729611 Free PMC article. Review.
-
Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome.RNA. 2000 Aug;6(8):1174-84. doi: 10.1017/s1355838200000637. RNA. 2000. PMID: 10943896 Free PMC article.
-
Elfamycins: inhibitors of elongation factor-Tu.Mol Microbiol. 2017 Oct;106(1):22-34. doi: 10.1111/mmi.13750. Epub 2017 Aug 9. Mol Microbiol. 2017. PMID: 28710887 Free PMC article. Review.
-
Multidrug-resistant bacteria compensate for the epistasis between resistances.PLoS Biol. 2017 Apr 18;15(4):e2001741. doi: 10.1371/journal.pbio.2001741. eCollection 2017 Apr. PLoS Biol. 2017. PMID: 28419091 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources