Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption
- PMID: 8722040
- DOI: 10.1139/o95-132
Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption
Abstract
The mechanism of elongation factor Tu (EF-Tu) catalyzed aminoacyl-tRNA (aa-tRNA) binding to the A site of the ribosome was studied. Two types of complexes of EF-Tu with GTP and aa-tRNA, EF-Tu.GTP-aa-tRNA (ternary) and (EF-Tu.GTP)2.aa-tRNA (quinternary), can be formed in vitro depending on the conditions. On interaction with the ribosomal A site, generally only one molecule of GTP is hydrolysed per aa-tRNA bound and peptide bond formed. The second GTP molecule from the quinternary complex is hydrolyzed only during translation of an oligo(U) tract in the presence of EF-G. The first step in the interaction between the ribosome and the ternary complex is the codon-independent formation of an initial complex. In the absence of codon recognition, the aa-tRNA-EF-Tu complex does not enter further steps of A site binding and remains in the initial binding state. Despite the rapid formation of the initial complex, the rate constant of GTP hydrolysis in the noncognate complex is four orders of magnitude lower compared with the cognate complex. This, together with the results of time-resolved fluorescence measurements, suggests that codon recognition by the ternary complex on the ribosome initiates a series of structural rearrangements that result in a conformational change of EF-Tu, presumably involving the effector region, which, in turn, triggers GTP hydrolysis and the subsequent steps of A site binding.
Similar articles
-
Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome.EMBO J. 1995 Jun 1;14(11):2613-9. doi: 10.1002/j.1460-2075.1995.tb07259.x. EMBO J. 1995. PMID: 7781613 Free PMC article.
-
Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.Eur J Biochem. 1989 Nov 6;185(2):341-6. doi: 10.1111/j.1432-1033.1989.tb15121.x. Eur J Biochem. 1989. PMID: 2684669
-
Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome.J Biol Chem. 1996 Jan 12;271(2):646-52. doi: 10.1074/jbc.271.2.646. J Biol Chem. 1996. PMID: 8557669
-
Ribosome dynamics during decoding.Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716):20160182. doi: 10.1098/rstb.2016.0182. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 28138068 Free PMC article. Review.
-
tRNA-ribosome interactions.Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1049-54. doi: 10.1139/o95-112. Biochem Cell Biol. 1995. PMID: 8722020 Review.
Cited by
-
Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins.Future Microbiol. 2010 Aug;5(8):1185-201. doi: 10.2217/fmb.10.91. Future Microbiol. 2010. PMID: 20722598 Free PMC article. Review.
-
Structural Insights into tRNA Dynamics on the Ribosome.Int J Mol Sci. 2015 Apr 30;16(5):9866-95. doi: 10.3390/ijms16059866. Int J Mol Sci. 2015. PMID: 25941930 Free PMC article. Review.
-
Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.J Biol Chem. 2014 Aug 22;289(34):23917-27. doi: 10.1074/jbc.M114.583385. Epub 2014 Jul 2. J Biol Chem. 2014. PMID: 24990941 Free PMC article.
-
Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex.J Biol Chem. 2013 May 10;288(19):13917-28. doi: 10.1074/jbc.M113.460014. Epub 2013 Mar 28. J Biol Chem. 2013. PMID: 23539628 Free PMC article.
-
Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu.Biochim Biophys Acta. 2008 Dec;1784(12):1908-17. doi: 10.1016/j.bbapap.2008.08.003. Epub 2008 Aug 16. Biochim Biophys Acta. 2008. PMID: 18773979 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources