Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;107(4):473-88.
doi: 10.1085/jgp.107.4.473.

Ion permeation and block of M-type and delayed rectifier potassium channels. Whole-cell recordings from bullfrog sympathetic neurons

Affiliations

Ion permeation and block of M-type and delayed rectifier potassium channels. Whole-cell recordings from bullfrog sympathetic neurons

B M Block et al. J Gen Physiol. 1996 Apr.

Abstract

Ion permeation and conduction were studied using whole-cell recordings of the M-current (I(M)) and delayed rectifier (IDR), two K+ currents that differ greatly in kinetics and modulation. Currents were recorded from isolated bullfrog sympathetic neurons with 88 mM [K+]i and various external cations. Selectivity for extracellular monovalent cations was assessed from permeability ratios calculated from reversal potentials and from chord conductances for inward current. PRb/PK was near 1.0 for both channels, and GRb/GK was 0.87 +/- 0.01 for IDR but only 0.35 +/- 0.01 for I(M) (15 mM [Rb+]o or [K+]o). The permeability sequences were generally similar for I(M) and IDR: K+ approximately Rb+ > NH4+ > Cs+, with no measurable permeability to Li+ or CH3NH3+. However, Na+ carried detectable inward current for IDR but not I(M). Nao+ also blocked inward K+ current for IDR (but not IM), at an apparent electrical distance (delta) approximately 0.4, with extrapolated dissociation constant (KD) approximately 1 M at 0 mV. Much of the instantaneous rectification of IDR in physiologic ionic conditions resulted from block by Nao+. Extracellular Cs+ carried detectable inward current for both channel types, and blocked I(M) with higher affinity (KD = 97 mM at 0 mV for I(M), KD) approximately 0.2 M at 0 mV for IDR), with delta approximately 0.9 for both. IDR showed several characteristics reflecting a multi-ion pore, including a small anomalous mole fraction effect for PRb/PK, concentration-dependent GRb/GK, and concentration-dependent apparent KD's and delta's for block by Nao+ and Cso+. I(M) showed no clear evidence of multi-ion pore behavior. For I(M), a two-barrier one-site model could describe permeation of K+ and Rb+ and block by Cso+, whereas for IDR even a three-barrier, two-site model was not fully adequate.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Gen Physiol. 1972 Nov;60(5):588-608 - PubMed
    1. Biophys J. 1994 Jun;66(6):1929-38 - PubMed
    1. J Gen Physiol. 1973 Jun;61(6):687-708 - PubMed
    1. J Membr Biol. 1974;18(1):61-80 - PubMed
    1. J Gen Physiol. 1977 Sep;70(3):269-81 - PubMed

Publication types