Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov-Dec;28(11-12):1139-45.

Physiological constraints in the aerobic performance of hummingbirds

Affiliations
  • PMID: 8728841

Physiological constraints in the aerobic performance of hummingbirds

J E Bicudo et al. Braz J Med Biol Res. 1995 Nov-Dec.

Abstract

Hovering flight has been described as the most energetically expensive form of locomotion. Among the vertebrates, hummingbirds weighing only 1.5-20 g are the elite practitioners of this aerial art. Their flight muscles are, therefore, the most oxygen demanding locomotor muscles per unit tissue mass of all vertebrates. Tissue level functional and structural adaptations for oxygen transport are compared between hummingbirds and mammals in this paper. Hummingbirds present extreme structural adaptations in their flight muscles. Mitochondrial densities greater than 30% are observed in their pectoral muscles, and the surface area of the inner membrane of their mitochondria is twice that of mammals. This doubling of their mitochondrial oxidative capacity is accompanied by a proportional increase in the specific activity (per g tissue) of the mitochondrial manganese superoxide dismutase (SOD-Mn) in their flight muscles, thus indicating that oxygen toxicity is not a constraint in the aerobic performance of hummingbirds during hovering flight. Finally, the liver appears to play a major role in providing the necessary substrates for their high aerobic performance, and also in eliminating the oxygen free radicals formed during oxidative phosphorylation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances