Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Feb;28(2):341-50.
doi: 10.1006/jmcc.1996.0032.

Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism

Affiliations
Comparative Study

Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism

B Clarke et al. J Mol Cell Cardiol. 1996 Feb.

Abstract

Ranolazine has shown anti-anginal efficacy in humans and cardiac anti-ischaemic activity in models, but without affecting haemodynamics or baseline contraction. In isolated normoxic rat hearts, Langendorff-perfused for 30 min with 11 mM glucose, 3% albumin, and 0.4 mM or 0.8 mM palmitate, 20 microM ranolazine significantly increased active, dephosphorylated, pyruvate dehydrogenase (PDHa), but not with no palmitate or 1.2 mM palmitate. Dichloroactetate (DCA, 1 mM), a PDHa kinase inhibitor, significantly increased PDHa in hearts perfused with 0, 0.4 or 0.8 mM but not 1.2 mM palmitate. PDHa was significantly increased with 1.2 mM palmitate by DCA plus ranolazine, and additive effects were also seen at 0.8 mM palmitate. Activation of PDH by ranolazine and promotion of glucose oxidation offers a plausible means by which the drug may be anti-ischaemic nonhaemodynamically. Extensive studies with extracted enzymes and isolated rat heart mitochondria failed to demonstrate any effects of ranolazine on PDH kinase or phosphatase, or on PDH catalytic activity, whereas effects of other known effectors (such as DCA) were readily demonstrable, suggesting that ranolazine activates PDH indirectly. Further analyses of the hearts revealed that ranolazine reduced acetyl CoA content under all conditions where fatty acid was present, and +/- DCA which itself had little effect. In the absence of fatty acid, ranolazine and/or DCA raised acetyl CoA. In perfusions where octanoate (+/- albumin) replaced palmitate, ranolazine still decreased acetyl CoA, but not when acetate replaced palmitate. In octanoate-perfused hearts, the contents of the C4, C6 and C8 CoA esters were all increased by ranolazine. This is consistent with ranolazine causing an inhibition of fatty acid beta-oxidation leading to decreased acetyl CoA and activation of PDH.

PubMed Disclaimer

Publication types

LinkOut - more resources