Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May;72(1):39-48.
doi: 10.1016/0306-4522(95)00525-0.

Hippocampal activity during transient respiratory events in the freely behaving cat

Affiliations

Hippocampal activity during transient respiratory events in the freely behaving cat

G R Poe et al. Neuroscience. 1996 May.

Erratum in

  • Neuroscience 1996 Sep;74(1):295

Abstract

We measured dorsal hippocampal activity accompanying sighs and apnea using reflectance imaging and electrophysiologic measures in freely behaving cats. Reflected 660-nm light from a 1-mm2 area of CA1 was captured during sighs and apnea at 25 Hz through a coherent image conduit coupled to a charge coupled device camera. Sighs and apnea frequently coincided with state transitions. Thus, state transitions without apnea or sighs were separately assessed to control for state-related activity changes. All dorsal hippocampal sites showed discrete regions of activation and inactivation during transient respiratory events. Imaged hippocampal activity increased 1-3 s before the enhanced inspiratory effort associated with sighs, and before resumption of breathing after apnea. State transitions lacking sighs and apnea did not elicit analogous optical activity patterns. The suprasylvian cortex, a control for site, showed no significant overall reflectance changes during phasic respiratory events, and no discrete regions of activation or inactivation. Spectral estimates of hippocampal electroencephalographic activity from 0-12 Hz showed significantly increased power at 3-4 Hz rhythmical slow activity before sighs and apnea, and increased 5-6 Hz rhythmical slow activity power during apnea, before resumption of breathing. Imaged activity and broadband hippocampal electroencephalogram power decreased during sighs. We propose that increased hippocampal activity before sigh onset and apnea termination indicates a role for the hippocampus in initiating inspiratory effort during transient respiratory events.

PubMed Disclaimer

Publication types

LinkOut - more resources